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PREDICTING THE NONLINEAR

HEREDITARY VISCOELASTICITY OF POLYMERS

UDC 539.434:677.494A. V. Demidov, A. G. Makarov,

and A. M. Stalevich∗

A mathematical model for the nonlinear hereditary viscoelasticity of polymer materials is proposed
to predict deformation processes of various complexity — from simple relaxation and simple creep
to complex deformation–relaxation and reverse relaxation processes with alternative loading and un-
loading.
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Introduction. An important direction of materials science is the study of the deformation properties
of polymer materials under nondestructive loads close to operating loads by means of mathematical modeling of
deformation based on experimental data processing.

At present, numerous studies of the viscoelastic properties of polymers have been performed. Nevertheless,
the great variety of materials has led to the need to develop new methods for studying their deformation properties.
Complication of the structure of polymer materials has a significant effect on their viscoelastic properties, which has
motivated the development of new mathematical models for the indicated properties and the use of computational
methods of experimental data processing. The development of new methods for analyzing the mechanical proper-
ties of polymers with their complex structure taken into account allows more reliable predictions of deformation
processes.

Recent efforts in materials science have been directed toward promoting the automation of means of quality
assurance and product tests. The solution of problems of controlling technological processes is indissolubly connected
with improvements in methods and devices for laboratory modeling of material behavior during processing and
operation and mathematical modeling methods of experimental data processing and analysis.

Analysis of Deformation Properties. Existing approaches to the analysis of the deformation properties
of polymer materials are based on descriptions of generalized experimental curves of relaxation and creep by using
normalized relaxation functions and retardation functions, which are usually taken to be integral normal distribution
curves on a logarithmic reduced-time scale. These methods of strain analysis and prediction allow one to carefully
study polymer materials of simple macrostructure, such as synthetic fibers. The mechanical properties of polymers
of more complex structure and articles made of them are difficult to study because their spectrum of relaxation
and retardation times is complicated by the superposition of the elementary spectra corresponding to the elements
constituting the material. This has stimulated the development of mathematical models for deformation properties
based on new, simpler (if possible) relaxation functions and retardation functions corresponding to the complicated
spectra. Theory for experimental data analysis and processing has been constructed taking into account both the
requirement of the minimum number of mathematical model parameters and their physical validity.
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The variety of modifications of viscoelastic equations is due to the choice of integral kernels. The most
promising are the Abel’, Rabotnov, Rzhanitsyn, Vul’fson–Koltunov, and Havriliak–Negami kernels [1]. The indi-
cated types of kernels possess the linearity property, i.e., they ignore the effect of strain and stress on the acceleration
or deceleration of viscoelastic processes.

The development of the nonlinear theory of viscoelasticity has been based on the Aleksandrov–Gurevich
assumption of a decrease in the activation energy under the action of external loading, which corresponds to the
acceleration of relaxation and creep processes. It has been proposed to use a logarithmic reduced-time scale. The
complication of the concept of time has made it possible to simplify the relaxation kernels. Nonlinear integral
kernels were studied by Persoz, Moskvitin, and Bugakov [1]. These integral kernels contained nonlinearity in the
form of a strain or stress function, which significantly complicated the problem compared to the linear version of
description of viscoelastic properties.

Stalevich [2] determined the average relaxation and retardation times with the activating effects of defor-
mation and load as parameters taken into account. The mathematical viscoelasticity model was simplified by
considering nonlinearity in the integral relaxation and retardation kernels in the form of functions of the average
relaxation and retardation times.

Modeling of viscoelastic processes of the indicated type is based on a description of generalized relaxation and
creep curves by classes of normalized functions (probability integral, Kohlrausch function, normalized hyperbolic
tangent, etc.) corresponding to some distributions of the relaxation and retardation times on a logarithmic reduced-
time scale. However, the indicated normalized functions exhibit fast convergence to asymptotic values, which does
not provide the required accuracy in predicting deformation processes for both long periods (months and years) and
the small time intervals (seconds and fractions of a second) corresponding to the initial stage of a quasi-extension
process.

Makarov [3] proposed a mathematical model for the viscoelastic properties of polymers based on the Cauchy
probability distribution of relaxing and retarded particles:

Eεt = E0 − (E0 − E∞)ϕεt; (1)

Dσt = D0 + (D∞ − D0)ϕσt; (2)
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Here Eεt = σ/ε is the relaxation modulus, Dσt = ε/σ is the compliance, t is time, 1/bnε and 1/bnσ are the intensity
parameters for the relaxation and creep processes, respectively; τε is the relaxation time (half the time required
for relaxation), τσ is the retardation time (half the time required for creep), E0 is the elastic modulus, E∞ is the
viscoelastic modulus D0 is the initial compliance, D∞ is the ultimate equilibrium compliance, ε is the strain, σ is
the stress, ϕεt and ϕσt are the relaxation and creep functions, respectively, specified in the form of a normalized
arctangent of the logarithm (NAL) of reduced time.

In contrast to the previously used normalized functions, the NAL function corresponding to the Cauchy
probability distribution has a much lower rate of convergence to asymptotic values. The proposed version of
mathematical modeling is expedient for predicting not only short- and long-term deformation processes in polymer
materials but also for viscoelastic processes in polymer materials of complex macrostructure because the sum of
random quantities distributed according to a normalized Cauchy law is known to be distributed according to the
same law. In other words, if the relaxing and retarded particles in a polymer are assumed to be distributed in the
characteristic relaxation and retardation times according to the Cauchy law, it can be assumed that macrorelaxing
and macroretarded particles are distributed according to the same law [4].

An advantage of the mathematical model (1)–(4) is that it contains the minimum number of variables, which
have a clear physical meaning. The parameters E0 = lim

t→0
Eεt, E∞ = lim

t→∞ Eεt, D0 = lim
t→0

Dσt, and D∞ = lim
t→∞Dσt

are asymptotic values of the relaxation and compliance modulus. The structural parameter bnε characterizes the
relaxation rate and corresponds to the logarithm of half the reduced relaxation time for strain ε occurring in the
time interval t ∈ [t′, t′′]; ln (t′/τε) = −bnε and ln (t′′/τε) = bnε. The structural parameter bnσ characterizes the
creep rate and corresponds to the logarithm of half the reduced creep time for stress σ occurring in the time interval
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t ∈ [t′, t′′]; ln (t′/τσ) = −bnσ and ln (t′′/τσ) = bnσ. The relaxation time fε1ε = ln (t1/τε) and retardation time
fσ1σ = ln (t1/τσ) functions characterize the shifts of the relaxation and creep curves along the logarithmic time
scale and are contained, respectively, in the structural strain–time functional argument
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)
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and the structural-force time functional argument
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The slow convergence of the NAL function (for example, in comparison with the probability integral) to
asymptotic values allows one to interpolate the relaxation modulus Eεt and compliance Dσt over a wide time range
and, hence, to predict both short- and long-term deformation processes.

In using the NAL function for predicting deformation processes, we have noticed an interesting fact, which
has not been observed in using various mathematical models of viscoelasticity: for some group of polymer materials
(Mylar, etc.), the calculated asymptotic value of the viscoelastic modulus vanished (E∞ = lim

t→∞Eεt = 0) [3]. This
implies that relaxation process is completed in an infinitely long time. This agrees with the physical model of
polymers viscoelasticity and indicates that the proposed mathematical model of viscoelasticity (1)–(6) is valid.

It should be noted that the choice of a normalized function for the mathematical model of the viscoelastic
properties of polymeric materials cannot be unequivocal and is complicated by the fact that no one functions can
be preferred a priori. The basic criterion for the choice is experiment.

Studies of the viscoelastic characteristics of polymers have shown that values of the elastic modulus E0

calculated using the proposed mathematical model (1)–(6) are larger than the corresponding values calculated
using mathematical models based on different normalized functions and are close to the acoustic values Ea [4],
which is also physically justified because the velocity of propagation of elastic interactions in polymers is close to
the sound velocity. The viscoelastic modulus E∞, which characterizes the lower asymptote of the relaxation modulus
in long-term processes decreases, which actually leads to an increase in the relaxation time. This conclusion also
refers to the creep process. This distinguishes the NAL function from the previously used normalized relaxation
and retardation functions (for example, the probability integral, Kohlrausch function, hyperbolic tangent, etc.).

Thus, the use of the normalized NAL function as the basis of the mathematical model of viscoelasticity
allows the deformation properties of polymers to be modeled with high accuracy, which, in turn, allows predictions
of deformation processes over a wider range. Analytical specification of the NAL function and the fact that it
belongs to the class of elementary functions simplify differential–integral transformations within framework of the
mathematical model considered and facilitate the determination of viscoelastic characteristics.

Determining Mechanical Characteristics of Polymers. As an example of determining the mechanical
characteristics of polymers, we consider processing of experimental data on the relaxation (Fig. 1) and creep (Fig. 2)
of polyester fibers. In Fig. 1, it is evident that the relaxation curves obtained for various strain values can be made
coincident with the generalized curve of the relaxation modulus Eεt approximated by the mathematical model (1),
(3) by a parallel shift along the logarithmic time scale for the quantity ln (τε/t1):

ln (t/τε) = ln (t/t1) − ln (τε/t1).

This transformation of the relaxation curves is based on the so-called deformation–time analogy. From the values of
the specified shifts, we determine the function ln (τε/t1), which, in essence, specifies the relaxation times τε (Fig. 3).
The structural intensity parameter of relaxation 1/bnε is determined as the similarity coefficient of the generalized
curve of the relaxation modulus and the normalized NAL function.

The asymptotic values of E0 and E∞ can be determined from the generalized dependence Eεt(ln (t/t1)) (see
Fig. 1). Thus, using the mathematical relaxation model (1), (3), from experimental relaxation curves (see Fig. 1)
one obtains the main relaxation characteristics, which are then used to predict deformation processes. Similarly,
from experimental creep curves (see Fig. 2), one obtains the creep parameters: the asymptotic values D0 and D∞,
the intensity parameter 1/bnσ, and the retardation time function ln (τσ/t1) (Fig. 4).

The reliability of the obtained mechanical characteristics is verified by calculating the relaxation modulus
and compliance from formulas (1) and (2) and by comparing the obtained values with experimental data (see Figs.
1 and 2).
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Fig. 1. Stress relaxation curve (1–6) and generalized curve of the relaxation modulus Eεt for polyester
fiber (T = 20◦C and t1 = 1 min) for ε = 1 (1), 2 (2), 3 (3), 4 (4), 5 (5), and 6% (6).

Fig. 2. Creep curves (1–6) and a generalized curve of compliance Dσt for polyester fiber (T = 20◦C
and t1 = 1 min) for σ = 82 (1), 98 (2), 106 (3), 114 (4), 123 (5), and 136 MPa (6).
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Fig. 3. Relaxation time function for polyester fiber (T = 20◦C and t1 = 1 min).

Fig. 4. Retardation time function for polyester fiber (T = 20◦C and t1 = 1 min).

Predicting Deformation Processes. Polymer deformation processes are predicted using the well-known
integral Boltzmann–Volterra relations

σt = E0εt − (E0 − E∞)

t∫

0

εθϕ
′
ε,t−θ dθ; (7)

εt = D0σt + (D∞ − D0)

t∫

0

σθϕ
′
σ,t−θ dθ (8)

for nonlinear hereditary relaxation and nonlinear hereditary creep processes, respectively [2], with the integral
relaxation and retardation kernels corresponding to the mathematical model (1)–(6):

ϕ′
εt =

∂ϕεt

∂t
=

1
π

1
bnε

1
1 + W 2

εt

1
t
, ϕ′

σt =
∂ϕσt

∂t
=

1
π

1
bnσ

1
1 + W 2

σt

1
t
. (9)

900



0
_2 2_3 _1 10 3 4 5 6 87

1

2

3

4

*

*
*

*

* * * * * * *

log(t/t1)

e, %

Fig. 5. Deformation–relaxation process for Mylar fiber with a linear density equal to 114 ·10−6 kg/m
(T = 20◦C, σ = 182 MPa, and t1 = 1 min; load removal at t = 10 min): the curve refers to
experimental data; the points are calculation results.

In modeling deformation processes, an advantage of using the integral kernels (9) and (10) as a consequence
of the mathematical model (1)–(6) is that the range of confidential prediction can be extended toward the large
and small times of the process with the prediction error decreased by reducing the effect of the quasi-instantaneous
deformation factor at the beginning of the process.

In addition, the increase in the prediction accuracy is due to the use of methods for calculating the improper
nonlinear hereditary integrals (7) and (8) based on nonuniform separation of the time scale with allowance for
the specificity of the process considered [3]. For example, in predicting fast processes characterized by increasing
strain rate, it is reasonable to separate the time scale in accordance with increasing geometric progression to take
into account the effect of the quasi-instantaneous deformation factor at the beginning of the process. In predicting
long-term processes characterized by decreasing strain rate, it is reasonable to separate the time scale in accordance
with the decreasing geometric progression.

The methods developed to calculate the nonlinear hereditary viscoelasticity integral (7), (8) based on the
mathematical model with the NAL function have been tested by calculations of various deformation–relaxation and
reverse relaxation processes [4]. Calculation results for a long-term deformation–relaxation process of a Mylar fibers
are presented in Fig. 5. It is evident that the calculation results are in good agreement with experimental data.

Separation of the Elastic and Viscoelastoplastic Components of the Mechanical Work of De-
formation. The proposed methods for predicting deformation–relaxation processes can be used to develop new
methods for dividing the specific (per unit volume) mechanical work of deformation [5]

at =

εt∫

0

σt dε =
1
2

E0ε
2
t − ε̇(E0 − E∞)

t∫

0

t∫

0

εt−sϕ
′
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into the elastic (at0 = E−1
0 σ2

t /2) and viscoelastoplastic (att = at − at0) components.
The fraction of the elastic component of the mechanical work at0/at can be determined from the formula

for the extension process
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where c = E∞/E0. The viscoelastoplastic component of the specific mechanical work or its fraction att/at is
determined similarly.

The elastic and viscoelastoplastic components of the mechanical work of deformation correspond to the
elastic component εt0 and viscoelastoplastic component εtt of the total deformation εt, which, in both the general
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Fig. 6. Decomposition of the total strain εt of polyester fiber in extension (T = 20◦C and ε̇ =
0.083 sec−1) into the elastic component εt0 and viscoelastoplastic component εtt.

Fig. 7. Contributions of the elastic component at0/at and viscoelastoplastic component att/at to
the mechanical work of deformation (T = 20◦C and ε̇ = 0.083 sec−1): the solid curve refers to
polyester fiber; the dashed curve to protective polyester fabric.

case for ε̇ �= const and in the particular case for ε̇ = const, can be determined from the formulas

εt0 = E−1
0 σt, εtt = εt − εt0 =

(
1 − E∞

E0

) t∫

0

εt−sϕ
′
εs ds,

where the stress σt is calculated by the relation (8).
Figure 6 shows the decomposition of the total strain for uniform extension using as an example the ex-

perimental dependence σ(εt) for polyester fiber for ε̇ = 0.083 sec−1. The components εt0 = 1.46 and εtt = 0.54
corresponds to the value εt0 = 1.46%; εt0 = 2.57 and εtt = 1.43 to the value εt = 4%; and εt0 = 3.38 and εtt = 2.62
to the value εt = 6%. The area under the extension diagram (solid curve) is equal to the total normalized (to unit
volume) mechanical work of deformation, and the area of the corresponding dashed triangle is equal to the value of
its elastic component. The components of the total mechanical work of deformation are calculated similarly. As the
strain increases, the contribution of the elastic component to the mechanical work decreases and the contribution
of the viscoelastoplastic component increases (Fig. 7).

The decomposition of the mechanical work of deformation into components is important in studies of the
effect of external mechanical actions on polymer materials used as elements of protective structures [6]. For example,
investigation of the components of the mechanical work of deformation allows one to analyze the deformation
properties of polyester fabric employed in impact-resistant helmet liners and other polymer materials (see Fig. 3).
At small strains (ε = 2%), the elastic components of the strain and mechanical work are dominant. In this case,
the contribution of the viscoelastoplastic component to the mechanical work is 30–40%. At the same time, an
increase in the strain (ε = 6%) leads to the dominance of the viscoelastoplastic components of the mechanical
work of deformation, which characterize the viscoelastic and plastic deformation components. In this case, it is
important to know how effectively the protective material can weaken the mechanical impact. The effectiveness is
determined by the increase in the contribution of the viscoelastoplastic component of the mechanical strain energy
with increasing strain. At the same time, at small strains, the dominance of the elastic components of the strain
and strain energy implies that the material rapidly recovers its shape and is suitable for further use.

By introducing a correction for the accumulation of the irreversible strain component that does not dependent
on the type of deformation process, one can calculate the total accumulated strain (εt)calc by the formula [5]

(εt)calc = εres + εt/η,
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Fig. 8. Functions of the average relaxation time (a) and retardation time (b) for polyester fiber for
T = 20 (1), 40 (2), and 60◦C (3).

where εt is the strain calculated by formula (8), η = (ε∗ − εres)ε∗ is the strain reversibility coefficient determined
experimentally, ε∗ is the strain before load removal, and εres is the residual strain after load removal. The stress
(σt)calc is calculated similarly, using a correction for strain irreversibility:

(σt)calc = ησt + (1 − η)E0εt.

Here σt is the stress calculated by formula (7).
Use of the indicated methods in calculations of complex deformation–relaxation (see Fig. 1) and reverse

relaxation processes increases the prediction accuracy.
It should be noted that the separation of strain into components is rather conditional and can be performed

using various methods. For example, during heating of a polymer to a certain temperature, irreversible plastic
deformation becomes reversible.

Thus, the methods of separating the mechanical work of deformation and the corresponding strain into
elastic and viscoelastoplastic components allow one to characterize the elastoplastic properties of materials, which
is of great importance, for example, in sampling according to elastic and plastic criteria. Correction for strain
irreversibility allows one to distinguish the plastic component in the viscoelastoplastic strain component, which also
increases the accuracy in predicting both simple and complex nonlinear hereditary viscoelastic processes.

Predicting Thermoviscoelasticity. The indicated methods for determining the viscoelastic characteris-
tics and predicting polymer deformation at variable temperature are based on the assumption of a linear temperature
dependence of the statistical average relaxation and retardation time functions, which has been supported exper-
imentally for the materials studied. Results of processing experimental curves of the relaxation and compliance
moduli obtained at various temperatures are used to determine the linear transformations of the average relax-
ation and retardation time functions that correspond to rotations of the plots of the indicated functions through
temperature-dependent angles, which provides values of the functions in specified temperature ranges (Fig. 8) [3]:

ε = ε∗ + ε̃ cosα − f̃ε sin α, fε = fε∗ + ε̃ sin α + f̃ε cosα,

σ = σ∗ + σ̃ cosβ − f̃σ sin β, fσ = fσ∗ + σ̃ sin β + f̃σ cosβ.

Here α = α(T ) and β = β(T ) are the angles of rotation the former coordinate systems (ε, fε) and (σ, fσ) around
the points (ε∗, fε∗) and (σ∗, fσ∗) relative to the new systems (ε̃, f̃ε), (σ̃, f̃σ), which depend on the temperature T ;
fε = ln (t1/τε) and fσ = ln (t1/τσ).

The other deformation characteristics (elastic and viscoelastic moduli, initial and ultimate equilibrium
compliances, structural intensity parameters of the processes) are transformed similarly using linear dependences
(Fig. 9).

Thus, the methods of linear transformation of viscoelastic characteristics in a specified temperature range
allow one to predict deformation processes at any temperatures in the examined range, including the processes
occurring at variable temperature.
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Conclusions. Methods using a mathematical model with nonlinear hereditary integral relaxation and re-
tardation kernels were proposed to analyze the deformation properties of polymers under nondestructive mechanical
loads, which considerably increase the ranges of time, load, and strain in the analysis of viscoelastic processes.

Methods were developed to determine the viscoelastic characteristics which are parameters of the pro-
posed mathematical model using results of short-term tests in simple relaxation and creep modes and to predict
deformation–relaxation and reverse relaxation processes and other more complex deformation modes.

A method was proposed to separate the total mechanical work of deformation and its corresponding strain
into the elastic and viscoelastoplastic components, which can be used to calculate polymer resistance in dynamic
deformation modes, including an impact mode, and to estimate the ability of materials to resist mechanical actions
and to recover the initial shape during operation.

A method for taking into account the pseudo-plastic component of irreversible strain in mathematical mod-
eling of the viscoelastic properties of materials was developed which improves the reliability of predicting complex
deformation modes.

Methods for accounting for the temperature dependence of viscoelastic characteristics in mathematical mod-
eling of deformation properties of materials were proposed which allow one to predict deformation processes at
variable temperature.
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